Reviving Threshold-Moving: a Simple Plug-in Bagging Ensemble for Binary and Multiclass Imbalanced Data
نویسندگان
چکیده
Class imbalance presents a major hurdle in the application of data mining methods. A common practice to deal with it is to create ensembles of classifiers that learn from resampled balanced data. For example, bagged decision trees combined with random undersampling (RUS) or the synthetic minority oversampling technique (SMOTE). However, most of the resampling methods entail asymmetric changes to the examples of different classes, which in turn can introduce its own biases in the model. Furthermore, those methods require a performance measure to be specified a priori before learning. An alternative is to use a so-called threshold-moving method that a posteriori changes the decision threshold of a model to counteract the imbalance, thus has a potential to adapt to the performance measure of interest. Surprisingly, little attention has been paid to the potential of combining bagging ensemble with threshold-moving. In this paper, we present probability thresholding bagging (PT-bagging), a versatile plug-in method that fills this gap. Contrary to usual rebalancing practice, our method preserves the natural class distribution of the data resulting in well calibrated posterior probabilities. We also extend the proposed method to handle multiclass data. The method is validated on binary and multiclass benchmark data sets. We perform analyses that provide insights into the proposed method.
منابع مشابه
A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data
Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, wh...
متن کاملAn Effective Approach for Imbalanced Classification: Unevenly Balanced Bagging
Learning from imbalanced data is an important problem in data mining research. Much research has addressed the problem of imbalanced data by using sampling methods to generate an equally balanced training set to improve the performance of the prediction models, but it is unclear what ratio of class distribution is best for training a prediction model. Bagging is one of the most popular and effe...
متن کاملRecognition of Multiple Imbalanced Cancer Types Based on DNA Microarray Data Using Ensemble Classifiers
DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce i...
متن کاملDiversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics
In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance data learning is of great importance and challenge in many real applications. Dealing with a minority class normally needs new concepts, observations and solutions in order to fully understand the underlying complicated models. We try to systematically review and solve this special learning task in t...
متن کاملImbalanced Multiclass Data Classification Using Ant Colony Optimization Algorithm
Class imbalance problems have drawn increasing interest lately because of its classification trouble caused by imbalanced class deliveries and poor prediction performance for minority class. This problem is particularly common in preparation and can be detected in various disciplines including fraud detection, anomaly detection, oil spillage detection, medical diagnosis, facial recognition. Man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1606.08698 شماره
صفحات -
تاریخ انتشار 2016